Zum Inhalt springen
Termin:02.12.2021 / 16-17 Uhr
von:M.Sc. Bastian Lenz
Wissenschaftlicher Mitarbeiter in der Abteilung Oberflächentechnik am Leibniz-IWT
Titel:Application of deep learning image recognition techniques for characterization of thin coatings
Anmeldungsiehe Formular unten auf der Seite
Anmeldeschluss: 30.11.2021



Characterization methods are an important part of surface engineering and coating development. By using deep learning image classification and object detection techniques, some of them can be automatized to meet the latest digitalization demands.

The Rockwell-C and the Scratch-test are established methods for coating adhesion determination. Since they are based on the classification of light microscopic images, it is possible to substitute humans with trained special neuronal networks, the convolutional neural networks. These so-called CNN's are already being used successfully in a variety of other applications, and can be adapted for material science purposes.

As an extension of Vickers hardness testing, the Palmqvist method utilises crack formation at the edges of Vickers indentations to evaluate the fracture toughness of bulk materials and coatings. By using CNN-based object detection, the necessary indentation and crack size measurement can be automatized.


[TEST] Application of deep learning image recognition techniques for characterization of thin coatings

Digitale Veranstaltungreihe

Mit * gekennzeichnete Felder sind Pflichtfelder. / marked fields are mandatory.

Diese Einwilligung kann ich jederzeit mit Wirkung für die Zukunft unter iwt-live@iwt-bremen.de per E-Mail widerrufen. Weitere Informationen entnehmen Sie bitte dem Datenschutzhinweis.